A New Stereoselective Total Synthesis of Phomonol

by Basi V. Subba Reddy*, Lavudia Srinivas, Pathuri Sivaramakrishna Reddy, Bhemavarapu Phaneendra Reddy, Attaluri R. Prasad, and Jhillu S. Yadav

Natural Product Chemistry, CSIR, Indian Institute of Chemical Technology, Hyderabad-500 007, India (fax: + 914027160512 ; e-mail: basireddy@iict.res.in)

[^0]Introduction. - The 2,6-disubstituted-tetrahydropyran-containing natural products such as phorboxazoles [1], aspergillides [2], (-)-diospongin B [3], decytospolide A [4], and neopeltolide [5] were found to exhibit promising biological properties, which make them attractive synthetic targets. In particular, phomonol (1) [6] (Fig.) was isolated from the leaves of mangrove species collected in the Fugong Mangrove Conservation Area, Fujian, P. R. China. The structure of $\mathbf{1}$ was established by 1D- and 2D-NMR spectroscopy and HR-Q-TOF mass spectrometry.

Due to the scarcity of phomonol in Nature, we attempted its total synthesis to produce enough quantity for further biological evaluations [7]. In continuation of our interest in the total synthesis of biologically active molecules [8], we herein report the stereoselective total synthesis of phomonol (1) employing dimethyl d-tartrate as a costeffective and readily available precursor.

1

Figure. The structure of phomonol

Results and Discussion. - As per our retrosynthetic analysis, we assumed that the phomonol (1) could be prepared by intramolecular oxa-Michael addition of a secondary alcohol to the α, β-unsaturated ketone 11, which in turn could easily be prepared from the readily available dimethyl D-tartrate 2 (Scheme 1).

Accordingly, tetrapropylammonium perruthenate (TPAP) oxidation and Wittig olefination of compound $\mathbf{3}$ [9] gave the (E)-ester $\mathbf{4}$ in 80% overall yield (Scheme 2). Reduction of $\mathbf{4}$ with diisobutylaluminium hydride (DIBAL-H) afforded the allylic alcohol 5 in 85% yield. Isomerization of the unsaturated alcohol 5 using $7 \mathrm{~mol} \%$ of

activated $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ in benzene at room temperature furnished the corresponding aldehyde $\mathbf{6}$ in 90% yield [10]. The crude aldehyde $\mathbf{6}$ was subjected to organocatalyzed asymmetric epoxidation with catalyst A (see [11]) to give the terminal epoxide 7 (93% de; by HPLC analysis) in 86% yield [11]. Regioselective ring opening of 7 with EtMgBr in the presence of a catalytic amount of CuCN gave the corresponding alcohol $\mathbf{8}$ in 90% yield. Protection of the secondary OH group of $\mathbf{8}$ using TBSOTf and 2,6lutidine at 0° gave the TBS ether $\mathbf{9}$ in 91% yield. Debenzylation of the latter with $\mathrm{Li} /$ naphthalene in THF afforded the primary alcohol in 91% yield, and subsequent oxidation with DMP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to the corresponding aldehyde, which was homologated with 1-(triphenylphosphoranylidene) propan-2-one in THF to furnish the α, β-unsaturated ketone 10 in 87% yield over two steps [12]. Removal of the TBS group with HF/pyridine in THF gave the secondary alcohol $\mathbf{1 1}$ in 90% yield.

Next, we investigated the cis-annular oxa-Michael reaction of 11. Surprisingly, no intramolecular oxa-Michael addition of $\mathbf{1 1}$ (Table, Entries 1 and 2) was observed either with catalytic CSA (camphorsulfonic acid) or with TsOH. Though NaH has been used for the same cyclization in a previous synthesis [7], the desired tetrahydropyran $\mathbf{1 2}$ was obtained in low yield (Table, Entry 3). ${ }^{\dagger} \mathrm{BuOK}$ also gave 12 in poor yield (Table, Entry 4).

Therefore, we next attempted the cyclization with DBU (1,8-diazabicycloundec-7ene) in the presence of LiCl in MeCN at room temperature. Interestingly, the oxaMichael reaction of $\mathbf{1 1}$ proceeded well under the above conditions [13] to give the tetrahydropyran derivative $\mathbf{1 2}$ exclusively in 90% yield (Table, Entry 5). Finally, the

Table. cis-Annular Oxa-Michael Reaction of Compound $\mathbf{1 1}$

Entry	Reagent	Solvent	Temp. [${ }^{\circ}$]	Yield [\%]
1	CSA	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	0
2	TsOH	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	0
3	NaH	THF	0	$45[7]$
4	${ }^{\text {BuOK }}$	THF	0	15
5	$\mathrm{DBU} / \mathrm{LiCl}$	MeCN	r.t.	90

Scheme 2. Synthesis of Phomonol from Dimethyl D-Tartrate

a) Tetrapropylammonium perruthenate (TPAP), N-methylmorpholine N-oxide (NMO), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt} ; 80 \%$. b) Diisobutylaluminium hydride (DIBAL-H), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ}, 15 \mathrm{~min} ; 85 \%$. c) $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}$, benzene. d) $50 \mathrm{~mol}-\% \mathrm{Cu}(\mathrm{TFA})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(\mathrm{TFA}, \mathrm{CF}_{3} \mathrm{COOH}\right), 20 \mathrm{~mol} \%$ cat. A (see [11]), $\mathrm{LiCl}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}, \mathrm{MeCN}, \mathrm{NaBH}_{4}, 0^{\circ}, 15 \mathrm{~min}, \mathrm{KOH}$, r.t., $\left.30 \mathrm{~min} . e\right) \mathrm{EtMgBr}, \mathrm{CuCN}, \mathrm{THF}, 0^{\circ}, 1 \mathrm{~h}$; $90 \% . f$) (tert-Butyl)dimethylsilyl trifluoromethanesulfonate (TBSOTf), 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 91 \% . g$) 1. Li , naphthalene, $-20^{\circ}, 91 \%$; 2. 4-(dimethylamino)pyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 3 h ; 3. 1-(triphenylphosphoranylidene) propan-2-one, dry THF, reflux, $8 \mathrm{~h} ; 87 \%$. h) HF/pyridine, THF, 90%. i) DBU, $\mathrm{LiCl}, \mathrm{THF} ; 90 \% . j$) $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH} / \mathrm{MeCN} 1: 1$, reflux, $4 \mathrm{~h} ; 66 \%$.
removal of acetonide from compound $\mathbf{1 2}$ using $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ afforded phomonol (1) in 66% yield (Scheme 2). The spectroscopic and analytical data of synthetic $\mathbf{1}$ are in accordance with those reported in [6].

Conclusions. - In summary, we have developed a concise total synthesis of phomonol (1) in a highly stereoselective manner. Our approach involves mainly the organocatalytic MacMillan asymmetric epoxidation and intramolecular oxa-Michael reaction as key steps. This approach provides an easy access to produce $\mathbf{1}$ in large scale for further biological screening.
P. S. R. and B. P. R. thank CSIR, New Delhi, for the award of fellowships.

Experimental Part

General. All reagents were of reagent grade and used without further purification unless specified otherwise. Solvents were distilled prior to use: THF, toluene, and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from Na and benzophenone ketyl; MeOH from Mg and I_{2}; and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2}. All air- or moisture-sensitive reactions were conducted under N_{2} or Ar in flame- or oven-dried glassware. Column chromatography (CC): silica gel ($60-120$ mesh or 100-200 mesh) packed in glass columns; technical-grade AcOEt and petroleum ether (PE) used were distilled prior to use. Optical rotations: Perkin-Elmer P241 polarimeter and Jasco-DIP-360 digital polarimeter using a 1-ml cell with a 1-dm path length. FT-IR Spectra: PerkinElmer FT-IR spectrometer, KBr pellets CHCl_{3}, neat (as mentioned); in $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra: Varian-Gemini-200, Bruker-Avance-300, Varian-Unity-400, or Varian-Inova-500 spectrometer, in CDCl_{3} or benzene 200,300 , or 500 MHz spectrometers at r.t.; the coupling constant J in Hz ; the chemical shifts, δ, in ppm downfield from TMS $\left(\mathrm{Me}_{4} \mathrm{Si}\right)$ as internal standard. ESI-MS: Micro-Mass-VG-7070H and VG-Autospec- M spectrometer; in m / z.

Ethyl (2E)-6-O-Benzyl-2,3-dideoxy-4,5-O-(1-methylethylidene)-d-threo-hex-2-enonate (4). To a soln. of $\mathbf{3}$ [9] ($2 \mathrm{~g}, 7.9 \mathrm{mmol}$) and molecular sieves ($4 \AA, 500 \mathrm{mg}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{ml})$ at 0° were added TPAP $(0.28 \mathrm{mg}, 0.79 \mathrm{mmol})$ and NMO $(1.39 \mathrm{~g}, 11.9 \mathrm{mmol})$, and the mixture was stirred for 30 min at r.t. The mixture was filtered through a short SiO_{2} column (AcOEt/hexane 1:4) to give the crude aldehyde, which was used for the next reaction directly. A mixture of aldehyde and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCOOEt}(4.0 \mathrm{~g}$, 12 mmol) in benzene (60 ml) was heated under reflux for 4 h . Removal of the solvent, followed by purification over SiO_{2}, gave $4(2.0 \mathrm{~g}, 80 \%$ for the two steps $)$. Pale-yellow oil. R_{f} ($\mathrm{AcOEt} /$ hexane, $1: 4$) $0.80 .[\alpha]_{\mathrm{D}}^{27}=-11.31\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $(\mathrm{KBr}): 3454,2998,2936,1724,1375,1043,763 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 1.24(t, J=6.2,3 \mathrm{H}) ; 1.36(s, 3 \mathrm{H}) ; 1.39(s, 3 \mathrm{H}) ; 3.33-3.51(m, 1 \mathrm{H}) ; 3.58-3.67(m$, $2 \mathrm{H}) ; 4.13-4.18(\mathrm{~m}, 2 \mathrm{H}) ; 4.39-4.47(\mathrm{~m}, 1 \mathrm{H}) ; 4.56(\mathrm{~s}, 2 \mathrm{H}) ; 5.64-6.01(m, 1 \mathrm{H}) ; 6.62-6.77(m, 1 \mathrm{H})$; $7.24-7.36(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 14.1 ; 26.6 ; 27.1 ; 61.4 ; 62.3 ; 76.8 ; 78.6 ; 81.0 ; 109.2 ; 127.5$; 127.7; 128.3; 137.6; 139.2; 166.9. ESI-MS: $343\left([M+\mathrm{Na}]^{+}\right)$.
(2E)-6-O-Benzyl-2,3-dideoxy-4,5-O-(1-methylethylidene)-d-threo-hex-2-enitol (5). To a stirred soln. of $4(2 \mathrm{~g}, 6.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at -78° was added DIBAL-H $\left(1.0 \mathrm{~m}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; 12.50 \mathrm{ml}$, $12.5 \mathrm{mmol})$, the mixture was warmed to 25° and then stirred at the same temp. for 15 min . The resulting mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$, and a soln. of sat. aq. Rochelle's salt $(60 \mathrm{ml})$ was added. The biphasic soln. was stirred vigorously at 25° for 3 h and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$. The combined org. layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The residue was purified by CC $\left(\mathrm{SiO}_{2}\right)$ to provide $5(1.7 \mathrm{~g}, 85 \%)$. Colorless oil. R_{f} (AcOEt/hexane, 1:4) 0.50. $[\alpha]_{\mathrm{D}}^{27}=-42.2(c=1.0$, CHCl_{3}). IR (KBr): 3448, 2988, 2939, 1378, 1042, 727. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 1.36(s, 3 \mathrm{H}) ; 1.39(s$, $3 \mathrm{H}) ; 3.49-3.60(m, 2 \mathrm{H}) ; 3.64-3.70(m, 2 \mathrm{H}) ; 3.72-3.81(m, 1 \mathrm{H}) ; 4.56(s, 2 \mathrm{H}) ; 4.62-4.70(m, 1 \mathrm{H})$; $5.32-5.42(m, 1 \mathrm{H}) ; 5.66-5.74(m, 1 \mathrm{H}) ; 7.28-7.37(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 26.6 ; 27.2$; $62.3 ; 71.1 ; 76.8 ; 78.6 ; 81.0 ; 109.3 ; 127.4 ; 128.2 ; 130.5 ; 137.5 ; 138.1$. ESI-MS: $301\left([M+\mathrm{Na}]^{+}\right)$.

1,2-Anhydro-6-O-benzyl-3-deoxy-4,5-O-(1-methylethylidene)-D-xylo-hexitol (7). A 100-ml two neck round-bottomed flask was charged with $7 \mathrm{~mol}-\%$ of $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ in benzene $(10 \mathrm{ml})$ and purged it with H_{2} via the balloon for 30 min (for the activation of the catalyst). Then, H_{2} supply was stopped, and the stirring was continued for 10 min , and a soln. of $\mathbf{5}(1.0 \mathrm{~g}, 3.50 \mathrm{mmol})$ in benzene $(5 \mathrm{ml})$ was added. The resulting mixture was stirred for another 10 min , After completion of the reaction, as indicated by TLC, the mixture was filtered through a Celite pad and washed with AcOEt $(20 \mathrm{ml})$. The filtrate was concentrated in vacuo to afford the crude aldehyde 6. To a stirred soln. of catalyst A [11] ($20 \mathrm{~mol}-\%$, $190 \mathrm{mg}, 0.72 \mathrm{mmol}), \mathrm{LiCl}(226 \mathrm{mg}, 5.3 \mathrm{mmol}), \mathrm{Cu}(\mathrm{TFA})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(520 \mathrm{mg}, 1.7 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(856 \mathrm{mg}$, $3.5 \mathrm{mmol})$ in $\mathrm{MeCN}(40 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(0.14 \mathrm{ml}, 7.9 \mathrm{mmol})$ was added $6(1 \mathrm{~g}, 3.5 \mathrm{mmol})$ at 10°, and the mixture was stirred vigorously for 2 h at the same temp. The mixture was then cooled to 0° before NaBH_{4} $(340 \mathrm{mg}, 8.9 \mathrm{mmol})$ was added. After 10 min , the mixture was warmed to r.t, and then a freshly prepared aq. soln. of $\mathrm{KOH}(20 \mathrm{ml})$ in $\mathrm{EtOH}\left(8 \mathrm{ml} ; 6 \mathrm{~g}\right.$ of KOH dissolved in 15 ml of dist. $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was added. The resulting mixture was stirred vigorously for 30 min . After completion, the reaction was quenched with

50 ml of dist. $\mathrm{H}_{2} \mathrm{O}$, and the mixture was extracted with $\mathrm{AcOEt}(3 \times 30 \mathrm{ml})$, washed with brine $(1 \times$ $50 \mathrm{ml})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo maintaining the bath temp. at 30°. The resulting oil was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right)$ to afford $\mathbf{7}(900 \mathrm{mg}, 86 \%)$. Colorless oil. R_{f} (AcOEt/hexane $\left.1: 4\right)$ 0.65. $[\alpha]_{\mathrm{D}}^{27}=+44.6\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR (KBr): 2928, 2848, 1495, 1452, 1363, 1259, 1026, 925, 769. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 1.42(s, 6 \mathrm{H}) ; 1.82-1.90(m, 2 \mathrm{H}) ; 2.48-2.54(m, 1 \mathrm{H}) ; 2.72-2.83(m, 1 \mathrm{H})$; $3.03-3.13(m, 1 \mathrm{H}) ; 3.54-3.66(m, 2 \mathrm{H}) ; 3.84-4.00(m, 2 \mathrm{H}) ; 4.58(s, 2 \mathrm{H}) ; 7.26-7.39(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 26.9 ; 27.3 ; 36.7 ; 47.7 ; 49.4 ; 73.5 ; 75.7 ; 76.0 ; 79.9 ; 109.1 ; 127.7 ; 127.8 ; 128.4 ; 137.9$. HR-ESI-MS: $301.1410\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{4}^{+}\right.$; calc. 301.1402).
(2S)-1-\{(4R,5R)-5-[(Benzyloxy)methyl $]-2,2-$ dimethyl-1,3-dioxolan-4-ylfpentan-2-ol (8). To a stirred soln. of $7(0.9 \mathrm{~g}, 3.3 \mathrm{mmol})$ and $\mathrm{CuCN}(120 \mathrm{mg}, 0.6 \mathrm{mmol})$ in THF $(50 \mathrm{ml})$ at -40° was added EtMgBr $\left(6.6 \mathrm{ml}\right.$ of a 1.0 m soln. in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.6 \mathrm{mmol}\right)$. The resulting mixture was stirred at this temp. for 30 min before warming to r.t over a period of 1 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{ml})$. The org. phase was separated, and the aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined org. phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. Purification by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right)$ provided $\mathbf{8}$ ($810 \mathrm{mg}, 90 \%$). Colorless oil. R_{f} (AcOEt/hexane 1:4) 0.40. $[\alpha]_{\mathrm{D}}^{27}=+42.1\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR (KBr): 3456, 2986, 2926, 2856, 1462, 1376, 1218, 1169, 1056, 925. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 0.94(t, J=7.0$, $3 \mathrm{H}) ; 1.39-1.48(m, 10 \mathrm{H}) ; 1.71-1.79(m, 2 \mathrm{H}) ; 3.38-3.45(m, 1 \mathrm{H}) ; 3.53-3.64(m, 2 \mathrm{H}) ; 3.83-3.93(m$, $1 \mathrm{H}) ; 4.00-4.10(m, 1 \mathrm{H}) ; 4.58(s, 3 \mathrm{H}) ; 7.27-7.39(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 14.1 ; 18.7 ; 26.9$; $38.0 ; 39.8 ; 68.7 ; 70.5 ; 76.3 ; 78.8 ; 80.2 ; 109.0 ; 127.7 ; 127.8 ; 128.4 ; 137.9$. HR-ESI-MS:331.1879 $\left([M+\mathrm{Na}]^{+}\right.$, $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NaO}_{4}^{+}$; calc. 331.1872).
\{[(2S)-1-\{(4R,5R)-5-[(Benzyloxy)methyl]-2,2-dimethyl-1,3-dioxolan-4-yl\}pentan-2-yl]oxy\}(tert-butyl)dimethylsilane (9). To a stirred soln. of $8(0.8 \mathrm{~g}, 2.7 \mathrm{mmol})$ and $2,6-\mathrm{lutidine}(0.58 \mathrm{~g}, 5.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added TBSOTf $(0.60 \mathrm{~g}, 2.7 \mathrm{mmol})$ portionwise. The resulting mixture was stirred for 1 h at r.t., diluted with sat. NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The org. layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. The crude residue was purified by CC $\left(\mathrm{SiO}_{2}\right)$ to give the $9(1.01 \mathrm{~g}, 91.0 \%)$. Colorless oil. $R_{\mathrm{f}}(\mathrm{AcOEt} /$ hexane $1: 4) 0.8[\alpha]_{\mathrm{D}}^{27}=+14.31(c=1.0$, CHCl_{3}). IR (KBr): 3307, 3067, 2956, 2856, 1466, 1361, 1253, 1097, 835, 775. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right):$ $0.09(s, 6 \mathrm{H}) ; 0.90(t, J=3.3,3 \mathrm{H}) ; 0.93(s, 9 \mathrm{H}) ; 1.39-1.48(m, 8 \mathrm{H}) ; 1.59-1.73(m, 2 \mathrm{H}) ; 1.76-1.82(m$, $2 \mathrm{H}) ; 3.55-3.62(\mathrm{~m}, 1 \mathrm{H}) ; 3.82-3.89(\mathrm{~m}, 2 \mathrm{H}) ; 3.98-4.04(\mathrm{~m}, 1 \mathrm{H}) ; 4.10-4.16(\mathrm{~m}, 1 \mathrm{H}) ; 4.60(\mathrm{~s}, 3 \mathrm{H})$; $7.27-7.40(m, 5 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right):-3.6 ;-2.9 ; 14.2 ; 17.7 ; 18.5 ; 25.7 ; 25.8 ; 25.9 ; 26.9 ; 27.3$; 38.7; 41.2; 68.9; 70.4; 73.4; 75.1; 80.1; 108.7; 127.4; 127.6; 128.3; 137.8. HR-ESI-MS: $423.2912\left([M+\mathrm{H}]^{+}\right.$, $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si}^{+}$; calc. 423.2925).
(3E)-4-\{(4R,5R)-5-[(2S)-2-\{[(tert-Butyl)(dimethyl)silyl]oxy]pentyl]-2,2-dimethyl-1,3-dioxolan-4-ylfbut-3-en-2-one (10). To a soln. of naphthalene $(1.56 \mathrm{~g}, 12.2 \mathrm{mmol})$ in THF $(12 \mathrm{ml})$ was added small pieces of Li metal $(0.08 \mathrm{~g}, 12.2 \mathrm{mmol})$. The mixture was stirred at r.t. under an Ar until Li metal was completely dissolved. The resulting dark green soln. of lithium naphthalenide was cooled to -25°, and then a soln. of $9(1.0 \mathrm{~g}, 2.4 \mathrm{mmol})$ in THF $(4 \mathrm{ml})$ was added dropwise over 5 min . The resulting mixture was stirred at -25° for 70 min . Upon completion, the reaction was quenched with a sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. $(3 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{ml})$, and then the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{ml})$. The combined extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude product was then purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right)$ to give the primary alcohol ($700 \mathrm{mg}, 91 \%$ yield) as a colorless oil. $R_{\mathrm{f}}(\mathrm{AcOEt} /$ hexane $3: 7) 0.4$. To a stirred soln of the primary alcohol $(0.7 \mathrm{~g}, 2.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0°, DMP $(1.12 \mathrm{~g}, 2.64 \mathrm{mmol})$ was added, and then the mixture was stirred it at r.t. for 1 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and filtered through a small pad of Celite, evaporated in vacuo, and the residue was directly used in the next reaction. Thus obtained aldehyde was then treated with 1-(triphenylphosphoranylidene)propan-2-one ($1.41 \mathrm{~g}, 4.4 \mathrm{mmol}$) under reflux for 8 h . The solvent was evaporated in vacuo and the residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right)$ to afford $10(0.65 \mathrm{~g}, 87 \%$ over two steps $)$. Pale-yellow liquid. R_{f} (AcOEt/hexane 1:9) 0.8. $[\alpha]_{\mathrm{D}}^{27}=+50.31\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR $(\mathrm{KBr}): 3032,1684$, 1454, 1374, 1248, 1096, 964, 884, 764. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 0.06(s, 6 \mathrm{H}) ; 0.85-0.94(m, 12 \mathrm{H})$; $1.39-1.48(m, 8 \mathrm{H}) ; 1.58-1.63(m, 2 \mathrm{H}) ; 2.29(s, 3 \mathrm{H}) ; 3.80-3.95(m, 2 \mathrm{H}) ; 4.07-4.16(m, 1 \mathrm{H}) ; 6.32(d d$, $J=15.1,8.3,1 \mathrm{H}) ; 6.60-6.78(m, 1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right):-4.8 ;-4.2 ; 14.3 ; 17.8 ; 19.1 ; 25.8$; 26.7; 27.3; 27.4; 29.7; 38.7; 40.5; 68.8; 69.5; 80.8; 109.3; 131.7; 142.8; 197.8. HR-ESI-MS: 393.2429 ([$M+$ $\mathrm{Na}]^{+}, \mathrm{C}_{20} \mathrm{H}_{38} \mathrm{NaO}_{4} \mathrm{Si}^{+}$; calc. 393.2435.
(1S,5R)-1,5-Anhydro-2-deoxy-3,4-O-(1-methylethylidene)-5-(2-oxopropyl)-1-propyl-D-threo-pentitol $(\mathbf{1 2})$. To a soln. of $\mathbf{1 0}(0.65 \mathrm{~g}, 1.8 \mathrm{mmol})$ in $\mathrm{THF}(4 \mathrm{ml})$ was added $\mathrm{HF} /$ pyridine $(1.8 \mathrm{ml}, 1.8 \mathrm{mmol})$ at 0°. After stirring the mixture for 3 h at r.t., the reaction was quenched with sat. aq. NaHCO_{3} soln. $(10 \mathrm{ml})$. The aq. layer was extracted with $\mathrm{AcOEt}(2 \times 5 \mathrm{ml})$. The combined org. phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right)$ to afford alcohol $\mathbf{1 1}(0.4 \mathrm{~g}, 90 \%)$ as a paleyellow liquid. To a stirred soln. of alcohol $11(0.100 \mathrm{~g}, 0.41 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{ml})$ were added LiCl $(0.173 \mathrm{~g}, 4.1 \mathrm{mmol})$ and $\mathrm{DBU}(0.62 \mathrm{~g}, 4.1 \mathrm{mmol})$ at r.t. After stirring at the same temp. for 1.5 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ soln., and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was purified by CC to afford pure $\mathbf{1 2}(0.09 \mathrm{~g}, 90 \%)$. Colorless liquid. $R_{\mathrm{f}}(\mathrm{AcOEt} / \mathrm{hexane} 3: 7) 0.5 . R_{\mathrm{f}}(\mathrm{AcOEt} /$ hexane 1:9) 0.8. $[\alpha]_{\mathrm{D}}^{27}=+9.58\left(c=1.0, \mathrm{CHCl}_{3}\right)$. IR (KBr): 2956, 2928, 1684, 1364, 1179, 1035, 833, 773. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 0.90(t, J=7.3,3 \mathrm{H}) ; 1.20-1.62(m, 11 \mathrm{H}) ; 2.11(t d, J=6.5,4.1,1 \mathrm{H}) ; 2.21(s$, $3 \mathrm{H}) ; 2.76-2.61(\mathrm{~m}, 2 \mathrm{H}) ; 3.04(t, J=8.8,1 \mathrm{H}) ; 3.38-3.49(m, 1 \mathrm{H}) ; 3.54-3.62(m, 1 \mathrm{H}) ; 3.91(d t, J=8.5$, $4.1,1 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 13.7 ; 18.6 ; 26.8 ; 30.7 ; 37.4 ; 38.9 ; 46.5 ; 73.2 ; 75.4 ; 76.4 ; 78.1 ; 79.8$; 109.6; 208.2. HR-ESI-MS: $279.1571\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NaO}_{4}^{+}\right.$; calc. 279.1566).

Phomonol (=(1S,5R)-1,5-Anhydro-2-deoxy-5-(2-oxopropyl)-1-propyl-d-threo-pentitol; 1). A mixture of $\mathbf{1 2}(0.09 \mathrm{~g}, 0.35 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.39 \mathrm{~g}, 1.05 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{ml})$ was stirred at reflux temp. for a specified time as required to complete the reaction. After completion of the reaction (TLC), the mixture was extracted with AcOEt, and the combined org. layers were washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure to remove the solvent. The crude product was purified by CC to afford pure $1(0.05 \mathrm{~g}, 66 \%)$. Colorless liquid. $R_{\mathrm{f}}(\mathrm{AcOEt} /$ hexane $3: 7) 0.5$. $[\alpha]_{\mathrm{D}}^{27}=+10.2$ $\left(c=1.0, \mathrm{CHCl}_{3}\right) . \mathrm{IR}(\mathrm{KBr}): 3368,2966,2924,1686,1365,1248,1036,843,778 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): 0.91(t, J=7.4,3 \mathrm{H}) ; 1.29-1.42(m, 4 \mathrm{H}) ; 1.44-1.54(m, 1 \mathrm{H}) ; 2.00(d d d, J=12.4,5.5,2.1$, $1 \mathrm{H}) ; 2.22(s, 3 \mathrm{H}) ; 2.69(d d, J=15.4,7.5,1 \mathrm{H}) ; 2.88(d d, J=15.6,4.5,1 \mathrm{H}) ; 3.10(t, J=8.4,1 \mathrm{H}) ; 3.38$ $3.48(m, 1 \mathrm{H}) ; 3.58-3.69(m, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 14.0 ; 18.8 ; 31.1 ; 37.6 ; 39.0 ; 46.6 ; 73.2$; 75.6; 75.4; 76.3; 208.4. HR-ESI-MS: $239.1258\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NaO}_{4}^{+}\right.$; calc. 239.1253).

REFERENCES

[1] P. A. Searle, T. F. Molinski, J. Am. Chem. Soc. 1995, 117, 8126; C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, J. Am. Chem. Soc. 1998, 120, 5597; R. D. Cink, C. J. Forsyth, J. Org. Chem. 1997, 62, 5672.
[2] K. Kito, R. Ookura, S. Yoshida, M. Namikoshi, T. Ooi, T. Kusumi, Org. Lett. 2008, 10, 225; R. Ookura, K. Kito, Y. Saito, T. Kusumi, T. Ooi, Chem. Lett. 2009, 38, 384; F. Cateni, J. Zilic, M. Zacchigna, P. Bonivento, F. Frausin, V. Scarcia, Eur. J. Med. Chem. 2006, 41, 192.
[3] J. Yin, K. Kouda, Y. Tezuka, Q. L. Tran, T. Miyahara, Y. Chen, S. Kadota, Planta Med. 2004, 70, 54.
[4] S. Lu, P. Sun, T. Li, T. Kurtán, A. Mándi, S. Antus, K. Krohn, S. Draeger, B. Schulz, Y. Yi, L. Li, W. Zhang, J. Org. Chem. 2011, 76, 9699.
[5] V. V. Vintonyak, M. E. Maier, Org. Lett. 2008, 10, 1239; V. V. Vintonyak, B. Kunze, F. Sasse, M. E. Maier, Chem. - Eur. J. 2008, 14, 11132.
[6] Y.-Y. Li, M.-Z. Wang, Y.-J. Huang, Y.-M. Shen, Mycology 2010, 1, 254.
[7] P. Radha Krishna, S. Prabhakar, Tetrahedron Lett. 2013, 54, 3788.
[8] B. V. S. Reddy, B. P. Reddy, T. Pandurangam, J. S. Yadav, Tetrahedron Lett. 2011, 52, 2306; B. P. Reddy, T. Pandurangam, J. S. Yadav, B. V. S. Reddy, Tetrahedron Lett. 2012, 53, 5749; B. V. S. Reddy, P. S. Reddy, B. P. Reddy, J. S. Yadav, A. Al K. Al Ghamdi, Tetrahedron Lett. 2013, 54, 5758; B. V. S. Reddy, B. P. Reddy, N. Swapnil, J. S. Yadav, Tetrahedron Lett. 2013, 54, 5781; B. V. S. Reddy, B. P. Reddy, P. S. Reddy, Y. J. Reddy, J. S. Yadav, Tetrahedron Lett. 2013, 54, 4960.
[9] E. Hungerbühler, D. Seebach, Helv. Chim. Acta 1981, 64, 687.
[10] G. Sabitha, S. Nayak, M. Bhikshapathi, J. S. Yadav, Org. Lett. 2011, 13, 382.
[11] M. Amatore, T. D. Beeson, S. P. Brown, D. W. C. MacMillan, Angew. Chem., Int. Ed. 2009, 48, 5121; G. Kumaraswamy, A. N. Murthy, K. Sadaiah, Tetrahedron 2012, 68, 3179 ; T. H. Graham, B. D. Horning, D. W. C. MacMillan, Org. Synth. 2011, 88, 42.
[12] P. J. Reddy, A. S. Reddy, J. S. Yadav, B. V. S. Reddy, Tetrahedron Lett. 2012, 53, 4054.
[13] H. Fuwa, A. Saito, M. Sasaki, Angew. Chem., Int. Ed. 2010, 49, 3041; H. Fuwa, H. Yamaguchi, M. Sasaki, Tetrahedron 2010, 66, 7492.

[^0]: A stereoselective total synthesis of phomonol, following organocatalytic enantioselective epoxidation and intramolecular oxa-Michael reaction as key steps, is described. The use of readily available Dtartaric acid as a chiral source renders this approach quite simple and attractive.

